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Several algorithms and models have recently been proposed for imitation learning in
humans and robots. However, few proposals offer a framework for imitation learning in
noisy stochastic environments where the imitator must learn and act under real-time
performance constraints. We present a novel probabilistic framework for imitation learn-
ing in stochastic environments with unreliable sensors. Bayesian algorithms, based on
Meltzoff and Moore’s AIM hypothesis for action imitation, implement the core of an imi-
tation learning framework. Our algorithms are computationally efficient, allowing real-
time learning and imitation in an active stereo vision robotic head and on a humanoid
robot. We present simulated and real-world robotics results demonstrating the viability
of our approach. We conclude by advocating a research agenda that promotes interaction
between cognitive and robotic studies of imitation.
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1. Introduction: Imitation Learning in Animals and Machines

The capacity of human infants to learn and adapt is remarkable. A few years after
birth, a child is able to speak, read, write, interact with others, and perform myr-
iad other complex tasks. In contrast, digital computers possess limited capabilities
to learn from their environments. The learning they exhibit arises from explicitly
programmed algorithms, often tuned for very specific applications. Human chil-
dren accomplish seemingly effortlessly what the artificial intelligence community
has labored more than 50 years to accomplish, with varying degrees of success.
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(a) (b)

Fig. 1. Neonates and infants are capable of imitating body movements: (a) Tongue protrusion,
opening the mouth, and lip protrusion are imitated by neonates.?? (b) A 14-month-old child replays
an observed, novel sequence required to cause a pad to light up.2! The precise action needed to
obtain the goal state of lighting up the pad is unlikely to be discovered by the child through random
exploration of actions. Demonstration by an adult determines the child’s later interactions with
the pad. Prior models (discussed below) encode social preference or other contextual biases to
guide action selection.

One key to solving this puzzle is that children are highly adept at observing
and imitating the actions of others (see Fig. 1). Imitation is a versatile mechanism
for transferring knowledge from a skilled agent (the instructor) to an unskilled
agent (or observer) using direct demonstration rather than manipulating symbols.

7,33,34

Various forms of imitation have been studied in monkeys and apes, in children

22724 and in an increasingly diverse selection of

(including infants only 42 min old),
machines.'!18:28 The reason behind the growing interest in imitation in the machine
learning and robotics communities is obvious: a machine with the ability to imitate
has a drastically lower cost of reprogramming than one which requires programming
by an expert. Imitative robots also offer testbeds for cognitive researchers to test
computational theories, and provide modifiable agents for contingent interaction
with humans in psychological experiments.

In this article, we discuss several findings and a basic model from the psy-
chological literature on imitation. We show how a Bayesian model captures some
developmental features of imitative learning in young children. Simulated results of
an agent in a maze-like environment demonstrate the viability of the approach. We
also briefly discuss two separate robotic platforms that illustrate how our Bayesian
framework might lead to more flexible types of learning in robots. Our framework
illustrates the potentially rich connections between cognitive modeling and proba-
bilistic methods for learning in agents.

2. Related Work

Our approach shares some similarities with other recent model-based architectures
for robotic imitation and control. Billard and Matari¢ developed a system that
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learned to imitate movements using biologically-inspired algorithms.® The system
learned a recurrent neural network model for motor control based on visual inputs
from an instructor. A software avatar performed imitation of human arm move-
ments. Demiris and Hayes proposed coupled forward and inverse models for robotic
imitation of human motor acts.'® Their architecture also draws inspiration from
the AIM model of infant imitation. Moving beyond this deterministic, graph-based
approach, we see advantages in using probabilistic models to handle real-world,
noisy data. Wolpert and Kawato likewise proposed learning probabilistic forward
and inverse models to control a robotic arm.'?:36 Another promising approach by
Demiris is an architecture for robotic imitation that learns probabilistic forward
models,®? where learned Bayesian networks represent a forward model for a robotic
gripper. These proposals still require the (potentially difficult) explicit learning of
inverse models. Further, it is unclear how well these architectures mirror develop-
mental stages observed in human infants.

Our framework differs from most previous efforts by employing Bayesian infer-
ence to decide which actions are most efficacious. A unique feature of our approach is
the combination of forward models to predict environmental state and prior models
expressing the instructor’s preference over actions, rather than learning combina-
tions of forward and inverse models. Related ideas are discussed in Refs. 3, 4, 27,
29 and 31.

2.1. The AIM model

Figure 2(a) provides a conceptual schematic of Meltzoff and Moore’s active inter-
modal mapping (AIM) hypothesis for imitation in infants.?3:?* The key claim is
that imitation is a matching-to-target process. The active nature of the matching
process is captured by the proprioceptive feedback loop. The loop allows infants’
motor performance to be evaluated against the seen target and serves as a basis for
correction. Imitation begins by mapping perceptions of the teacher and the infant’s
own somatosensory or proprioceptive feedback into a supramodal representation,
allowing matching to the target to occur.

2.2. Developmental changes in imitative behavior

A number of psychological theories of imitation have been proposed. Experimental
evidence obtained by Meltzoff and colleagues indicates a developmental evolution
of infants’ imitative capabilities, beginning with exploratory movements of muscle
groups and progressing to imitating bodily movements, imitating actions performed
on objects, and finally inferring intent during imitation. Any system that attempts
to capture the imitative capabilities of the developing child must address these
characteristics.

The ability of human neonates as young as 42 min to imitate shows that imita-
tion of a class of simple acts is present at birth; it is a biologically-endowed capability
universal among typically developing children. It is also clear that newborns do not
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begin life with the ability to perform imitative acts of arbitrary complexity. Neonates
are capable of imitating facial gestures and gross bodily movements; infants gradu-
ally acquire more advanced imitative capabilities.?!'?* Based on the developmental
work enumerated below, we suggest that the fundamental algorithms used by infants
to perform imitation may not change significantly over time. Rather, more com-
plex imitation occurs because infants gradually learn more complex models of their
environment (and other agents in that environment). Gradual acquisition of more
complex models for interacting with the environment, in turn, argues that these
environmental models are distinct from one another (and possibly hierarchical).

2.3. Imaitative learning via inferring intent

A later developmental step of imitation, and one where humans far exceed the
capabilities of machines, is inferring intent — knowing what the instructor “means
to do” even before the instructor has achieved a goal state (or when the instructor
fails to reach a goal state). The ability to infer the intent of others represents a
key step in forming a “theory of mind” for other agents, that is, being able to
simulate the internal mental states of others. In one study,?® 18-month-old infants
were shown an adult performing an unsuccessful motor act. For example, the adult
“accidentally” over- or under-shot his target object with his hands, or his hands
“slipped” several times in manipulating a toy, preventing him from transforming the
toy in some way. The results showed that infants did not re-enact what the adult
actually did, but rather what he was trying to achieve (whereas control infants did
not). This suggests that by, 18 months old, infants can infer which actions were
intended, even when they have not seen the goal successfully achieved.

3. A Bayesian Framework for Goal-Directed Imitation Learning

Imitation learning systems that only learn deterministic mappings from state to
actions are susceptible to noise and uncertainty in stochastic real-world environ-
ments. Development of a probabilistic framework for robotic imitation learning,
capable of scaling to complex hierarchies of goals and subgoals, remains a largely
untouched area of research. The following section sketches a proposal for such a
framework. Systems that use deterministic models rather than probabilistic ones
ignore the stochastic nature of realistic environments. We propose a goal-directed
Bayesian formalism that overcomes both of these problems.

We use the notation s; to denote the state of an agent at time ¢, and a; to denote
the action taken by an agent at time t. s¢ denotes a special “goal state” that is the
desired end result of the imitative behavior. Imitation learning can be viewed as a
model-based goal-directed Bayesian task by identifying:

e Forward model: Predicts a probability distribution over future states
given current state(s), action(s), and goal(s): P(s¢t1|at, st,s¢). “Simulator”
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that models how different actions affect the state of the agent and
environmental state.

e Inverse model: Infers a distribution over actions given current state(s), future
state(s), and goal(s): P(a¢|st, St+1, Sa). Models which action(s) are likely to cause
a transition from a given state to a desired next state.

e Prior model: Infers a distribution over actions given current state(s) and goal(s):
P(ay|st, s¢). Models the policy (or preferences) followed by a particular instructor
in transitioning through the environment to achieve a particular goal.

Learning inverse models is a notoriously difficult task,'® not least because multiple

actions may cause transitions from s; to s;y1. However, using Bayes’ rule, we can

infer an entire distribution over possible actions using the forward and prior models:
Pl(at, s, 5141, 5G)

P(at|8t75t+1,sc> - P(St St4+1 SG) (1)

_ P(stt1lat, st,56)Pat, st,56)
P(st, 8141, 56)

_ P(siy1]as, se,sa)P(ag|st, sa)
P(St,8t+175G)P(8t,SG)

& P(siy1lat, st, sq)Plailst, sa) (4)

o< P(seq1lar, se)Pladlse, sa), (5)

where Eq. (5) follows because environmental dynamics are assumed first-order
Markov (higher-order models taking into account a window of states s;...si4n
could, of course, be employed).

Equation (1) can be used to either select the maximum a posteriori (MAP)
action, or to sample over the distribution of actions. The latter method occasion-
ally picks an action different from the MAP action and potentially allows better
exploration of the action space (cf. the exploration-exploitation tradeoff in reinforce-
ment learning). Sampling from the distribution over actions is also called probability
matching. Evidence exists that the brain employs probability matching in at least
some cases.!3:16

Figure 2(b) depicts a block diagram of our architecture. Like AIM, our system
begins by running several feature detectors (skin detectors, face trackers, etc.) on
sensor inputs from the environment. Detected features are monitored over time to
produce state sequences. In turn, these sequences define actions. The next step is
to transform state and action observations into instructor-centric values, then map
from instructor-centric to observer-centric coordinates. Observer-centric values are
employed to update probabilistic forward and prior models in our Bayesian inference
framework. Finally, combining distributions from the forward and prior models as
in Eq. (1) yields a distribution over actions. The resulting distribution over actions
is converted into a single action the observer should take next.
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Fig. 2. Overview of model-based Bayesian imitation learning architecture: (a) Meltzoff and Moore’s
AIM model?* argues that infants match observations of adults with their own proprioceptive infor-
mation using a modality-independent (“supramodal”) representation of state. Our computational
framework suggests a probabilistic implementation of this hypothesis. (b) As in the AIM proposal,
the initial stages of our model correspond to the formation of a modality-independent representa-
tion of world state. Mappings from instructor-centric to observer-centric coordinates and from the
instructor’s motor degrees of freedom (DOF) to the observer’s motor DOF play the role of equiva-
lence detector in our framework, matching the instructor’s motor output to the motor commands
of the observer. Proprioceptive feedback from the execution of actions closes the motor control
loop.

3.1. A Bayesian algorithm for inferring intent

Being able to determine the intention of others is a crucial requirement for any
social agent, particularly an agent that learns by watching the actions of others.
One appealing aspect of our framework is that it suggests a probabilistic algorithm
for determining the intent of the instructor. That is, an observer can determine a
distribution over goal states based on watching what actions the instructor executes
over some period of time. This could have applications in machine learning systems
that predict what goal state the user is attempting to achieve, then offer suggestions
or assist in performing actions that help the user reach that state.

Our algorithm for inferring intent uses applications of Bayes’ rule to compute the
probability over goal states given a current state, action, and next state obtained
by the instructor, P (sg|st+1,at, s¢). This probability distribution over goal states
represents the instructor’s intent. In Markov decision process (MDP) problems,
performing inference over which policy another agent is following is known as plan
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431 For robotic agents that need to react in real time, full-blown infer-

recognition.
ence may prove impossible. Our approach represents a fast, greedy approximation
to solving the full plan recognition problem for MDPs. One point of note is that
P(s¢1]at, sty S¢) = P(St41]at, st), i.e. the forward model does not depend on the
goal state s¢, since the environment is indifferent to the desired goal. Our derivation

proceeds as follows:

—
D
=

P (SG|St+17atvst) = kP (8t+1|SG,at; st)P(5G|at75t)
o P(sty1lar, se) P(sclat, st) (7)
x P (sir1lae, st) P (ai|sa, st) P (st|sq) P (sq) - (8)

The first term in the equation above is the forward model. The second term
represents the prior model (the “policy”; see above). The third term represents
a distribution over states at time ¢, given a goal state sg. This could be learned
by, e.g. observing the instructor manipulate an object, with a known intent, and
recording how often the object is in each state. Alternatively, the observer could
itself “play with” or “experiment with” the object, bearing in mind a particular
goal state, and record how often each object state is observed. The fourth term is
a prior distribution over goal states characterizing how often a particular goal is
chosen. If the observer can either assume that the instructor has a similar reward
model to itself (the “Like-Me” hypothesis?’:22), or model the instructor’s desired
states in some other way, it can infer P(sq).

Interestingly, the four terms above roughly match the four developmental stages
laid out in Refs. 21 and 24. The first term is the forward model, whose learning
is assumed to begin very early in development during the “body babbling” stage.
The second term corresponds to a distribution over actions as learned during imi-
tation and goal-directed actions. The third term refers to distributions over states
of objects given a goal state. Because the space of actions an agent’s body can exe-
cute is presumably much less than the number of state configurations objects in the
environment can assume, this distribution requires collecting much more data than
the first. Once this distribution is learned, however, it becomes easier to manipulate
objects to a particular end — an observer that has learned P(s:|s¢) has learned
which states of an object or situation “look right” given a particular goal. The
complexity of this third term in the intent inference equation could provide one
reason why it takes children much longer to learn to imitate goal-directed actions
on objects than it does to perform simple imitation of body movements. Finally, the
last term, P(s¢), is the most complex term to learn. This is both because the num-
ber of possible goal states sg is huge, and the fact that the observer must model
the instructor’s distribution over goals indirectly (the observer obviously cannot
directly access the instructor’s reward model). The observer must rely on features
of its own reward model, as well as telltale signs of desired states to infer this prior
distribution. For example, states that the instructor tends to act to remain in, or
that cause the instructor to change the context of its actions, could be potential goal
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states. The difficulty of learning this distribution could help explain why it takes
so long for infants to acquire the final piece of their preverbal imitative toolkit —
determining the intent of others.

4. Results
4.1. Maze-world simulation

We tested the proposed Bayesian imitation framework using a simulated maze envi-
ronment. The environment [shown in Fig. 3(a)] consists of a 20 x 20 discrete array of
states (thin lines). Thick lines in the figure denote walls, through which agents can-
not pass. Three goal states exist in the environment; these are indicated by shaded
ovals. Lightness of ovals is proportional to the a priori probability of the instructor
selecting each goal state (reflecting, e.g. relative reward value experienced at each
state). In this example, prior probabilities for each state (from highest to lowest)
were set at P (s¢) = {0.67,0.27,0.06}. All instructor and observer trajectories begin
at the lower left corner, maze location (1,1) (black asterisk).

Figures 3 and 4 demonstrate imitation results in the simulated environment.
The task was to reproduce observed trajectories through a maze containing three
different goal states [maze locations marked with ovals in Fig. 3(a)]. This simulated
environment simplifies a number of the issues mentioned above: the location and
value of each goal state is known by the observer a priori; the movements of the
instructor are observed free from noise; the forward model is restricted so that only
moves to adjacent maze locations are possible; and the observer has no explicit
knowledge of walls (hence any wall-avoiding behavior results from watching the
instructor).

The set of possible actions for an agent [Fig. 3(b)] includes moving one square
to the north (N), south (S), east (E), or west (W), or simply staying put at the
current location (X). The stochastic nature of the maze environment means an
agent’s selected actions will not always have the intended consequences.

Figure 3(c) compares the true probabilistic kernel underlying state transitions
through the maze (left matrix) with the observer’s forward model (right matrix).
Lighter squares denote greater probability mass. Here the E and W moves are
significantly less reliable than the N, S, or X moves. The observer acquires the
estimated state transition kernel P (st41|at, s¢) by applying randomly chosen moves
to the environment for 500 simulation steps before imitation begins. In a more
biologically relevant context, this developmental period would correspond to “body
babbling,” where infants learn to map from motor commands to proprioceptive
states.?t

After the observer learns a forward model of the environmental dynamics, the
instructor demonstrates ten different trajectories to the observer (three to the white
goal, four to the light gray goal, three to the dark gray goal), allowing the observer
to learn a prior model. Figure 4(a) shows a sample training trajectory (dashed
line) where the instructor moves from location (1,1) to goal 1, the state at (19,19)
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Fig. 3. Simulated environment for imitation learning: (a) Maze environment used to train observer.
Thick black lines denote walls; ovals represent goal states. (b) Possible actions for the observer
are relative to the current grid location: on each simulation step, the observer can choose to move
North (N), South (S), East (E), West (W), or make no move (X). Because the environment is
stochastic, it is not guaranteed that the chosen action will cause a desired state transition. (c)
Actual (left) and estimated (right) state transition matrices. Each row of each matrix encodes a
probability distribution P(s¢t1|at, s¢) of reaching the desired next state given a current state and
action.

indicated by the white oval. The solid line demonstrates the observer moving to the
same goal after learning has occurred. The observer’s trajectory varies somewhat
from the instructor’s due to the stochastic nature of the environment but the final
state is the same as the instructor’s

We tested the intent inference algorithm using the trajectory shown in Fig. 4(b)
where the instructor moves toward goal 1. The observer’s task for this trajectory is
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Fig. 4. Imitation and goal inference in simulation: (a) The observer (solid line) successfully imitates
the instructor’s trajectory (dashed line), starting from map location (1,1). Grayscale color of the
lines indicates time: light gray denotes steps early on in the trajectory, with the line gradually
becoming darker as the timecourse of the trajectory continues. Note that the observer requires
more steps to complete the trajectory than does the instructor. This is because the environment
is stochastic and because of the limited training examples presented to the observer. (b) Sample
trajectory of the instructor moving from starting location (1,1) to the upper right goal (goal 1). The
task is for the observer to use its learned models to estimate a distribution over possible goal states
while the instructor is executing this trajectory. Total length of the trajectory is 45 simulation
steps. (¢) Graph showing a distribution over instructor’s goal states inferred by the observer at
different time points as the instructor is executing the trajectory in (b) . Note how the actual
goal state, goal 1, maintains a high probability relative to the other goal states throughout the
simulation. Goal 2 initially takes on a relatively high probability due to ambiguity in the training
trajectories and limited training data. After moving past the ambiguous part of the trajectory, goal
1 (the correct answer) clearly becomes dominant. Each data point in the graph shows an average
of the intent distribution taken over 5 time steps. (d) Example prior distributions P(a¢|st, sa)
learned by the observer. In this case, we show the learned distribution over actions for each state
given that the goal state sg is goal 2, the gray oval.
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to infer, at each time step of the trajectory, the intent of the instructor by estimating
a distribution over possible goal states the instructor is headed toward. The graph
in Fig. 4(c) shows this distribution over goals, where data points represent inferred
intent averaged over epochs of five simulation steps each (i.e. the first data point on
the graph represents inferred intent averaged over simulation steps 1-5, the second
data point spans simulation steps 6-10, etc.). Because of the prior probabilities
over goal states (given above), the initial distribution at time ¢ = 0 would be
{0.67,0.27,0.06} (and hence in favor of the correct goal). Note that the estimate of
the goal, i.e. the goal with the highest probability, is correct over all epochs. As the
graph shows, the first epoch of five time steps introduces ambiguity: the probabilities
for the first and second goals become almost equal. This is because the limited
number of training examples were biased toward trajectories that lead to the second
goal. However, the algorithm is particularly confident once the ambiguous section
of the trajectory, where the instructor could be moving toward the dark gray or the
light gray goal, is passed. Performance of the algorithm would be enhanced by more
training; only ten sample trajectories were presented to the algorithm, meaning that
its estimates of the distributions on the right-hand side of Eq. (8) were extremely
biased.

Figure 4(d) shows examples of learned prior distributions P(ay|ss, s¢) for the
case where the goal state s¢ is goal 2, the light gray oval at map location (8,1). The
plots show, for each possible map location s; that the observer could be in at time
t, the prior probability of each of the possible actions N, E, S, and W, given that
sa) is goal 2 (the X action is not shown since it has negligible probability mass for
the prior distributions shown here). In each of the four plots, the brightness of a
location is proportional to the probability mass of choosing a particular action at
that location. For example, given goal 2 and the current state s; = (1, 1), the largest
probability mass is associated with action E (moving east). These prior distributions
encode the preferences of the instructor as learned by the observer.

Figure 5(a) provides an indication of the inference algorithm’s scalabil-
ity. Here we show a log-log plot of the number of states in the maze envi-
ronment versus the runtime (in seconds)® required to learn the distributions
P(a¢|st, sa), P(st|sa), P(sa). Each data point represents an average over ten ran-
domly generated mazes, each trained with 50 training trajectories. Error bars rep-
resent standard deviations. Our model’s runtime scales linearly with the number
of states. This suggests the value of imitation: algorithms such as policy iteration
for MDPs can require O(N?) time in the number of states N, and exponential
time for variants such as simple policy iteration.'”>' Although we have not yet
proved efficiency bounds for our approach, the value of imitation in general is clear;
while naive approaches to reinforcement learning can require time exponential in
the number of states and actions, a knowledgeable instructor can focus a learning
agent’s attention on a small subset of states and actions that give rise to valuable

2Run on a Pentium Xeon using non-optimized Matlab code.
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Fig. 5. Performance data and state criticality:(a) Log—log plot of number of states (5 x 5,10 X
10,15 x 15,20 x 20, 25 x 25, 50 X 50) versus learning time required on a 2-processor workstation (in
seconds). Each data point represents the average run time across ten randomly generated mazes.
Error bars indicate standard deviations. 50 instructor training trajectories were used for each
maze. The slope of 0.97 on the log—log plot shows that our learning algorithm’s time complexity
is roughly linear in the number of states. (b) Entropy of states in the maze shown in Fig. 4, after
a sample training trajectory moving toward the goal at top right. Lower entropy (lighter squares)
denote states where the mentor is surer of its action distribution, implying a critical state on the
path to the goal.

trajectories. In Fig. 5(b), we show entropy of the action distribution P(aq|s:, s¢) for
each state, derived from a single training trajectory. While state transition counts
can determine P(sg), the probability that a particular state is a goal, entropy could
be used to determine the “criticality” of a particular state. In this example, lighter
squares denote locations where the mentor’s action distribution is sharply peaked,
implying that choosing a particular action from that state is especially critical. We
anticipate further exploring a combination of computing P(s¢) and action entropy
to determine the relevance of environmental states during learning.

4.2. Robotic gaze tracking

In infants, following the gaze of another to distal objects is a critical ability for
directing future learning (Fig. 6).

We previously demonstrated how our framework can be used to implement a
robotic system for identifying salient objects based on instructor gaze.'* Figure 7
shows an example of the system using vision to track the gaze of a human instructor.

Vision-based algorithms®?:37 find the instructor’s face and estimate pan and tilt
angles for the instructor’s head direction. Figure 7(b) shows an example estimate
for the face shown in (d). The system learns a prior model over which object sizes
and colors are salient to a particular instructor. The prior model is combined with
the likelihood term from the look direction of the instructor to determine the object
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Fig. 6. Infants track gaze to establish shared attention: Infants as young as 9 months can follow
an adult’s head turn to an object; older infants (> 10 months) use opened eyes as a cue to
detect whether they should perform gaze tracking. In this example, an infant and instructor begin
interacting (a). When the instructor looks toward an object (b), the infant focuses attention on the
same object using the instructor’s gaze as a cue (c). See Refs. 6 and 21 for relevant experiments.
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Fig. 7. Gaze tracking in a robotic head: (a) Left: A Biclops active stereo vision head from Met-
rica, Inc. Right: The view from the Biclops’ cameras as it executes our gaze tracking algorithm.
The bounding box outlines the estimated location of the instructor’s face, while the arrow shows
the instructor’s estimated gaze vector. (b) Likelihood surface for the face shown in (c), depicting
the likelihood over pan and tilt angles of the subject’s head. The region of highest likelihood (the
brightest region) matches the actual pan and tilt angles (black x) of the subject’s face shown
in (c).

from a cluttered scene to which the instructor is most likely attending. The set of
motor encoder values of the system corresponds to the modality-independent space
at the heart of the AIM hypothesis: the robotic head maps both its own motor
acts and the observations of the human into pan and tilt joint angles, allowing it to
determine which action will best match the human’s looking direction.

4.3. Humanotid implementation

We have conducted preliminary experiments that show how the general framework
proposed here might be implemented on a humanoid robot. We use a 12-camera
Vicon motion capture system to train a HOAP-2 humanoid robot using motion
models from a human instructor. Inverse kinematics software fits motion capture
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marker data to a model of the robot’s skeleton. The goal is to use imitation to teach
the robot simple manipulation tasks, in this case lifting a box to chest height. The
framework runs in real-time; all learning takes place online, and the system can be
switched at any time from watching the human to attempting to achieve a goal.

The motion capture system reports a list of human joint positions at time ¢,
vy = {61...0n}, and a 3D coordinate frame for each object i in the workspace,
sy = {x,y,2,05,0,,0.}. All objects are presently assumed to be non-articulated,
rigid bodies. For the simple task of lifting a box, we collapse s;11 and s¢g into a
single goal state; Eq. (5) then becomes

Pat|st, st11) o< P(sey1lar, s¢) Pase). 9)

We represent all distributions of interest with sparse histograms. Histograms are
easy to implement and lead to an efficient implementation; however, they do not
generalize well over many different initial states and end states. Our ongoing work
therefore includes representation of distributions using continuous models, in par-
ticular Gaussian processes.>®

Actions are encoded as hidden Markov models (HMMs). Our system maintains
a database of these models captured over time. Once a sequence of inferred joint
angles has been assigned to an HMM, the model is trained using the well-known
Baum-Welch algorithm.?® When a sequence of human activity is observed, the
system uses the Viterbi algorithm?% to determine the log-likelihood that each model
in the database generated the observed sequence. If the log-likelihood for at least
one model in the database is above a threshold € = 0, we assign the sequence to the
winning model and retrain it with the new sequence included; otherwise we create
a new HMM and assign the sequence to it.

Given a prior object state Sy, an estimated action a; executed by the human at
time ¢, and a final object state S¢;1 reached after the human’s action is complete, the
system updates its prior model P(a¢|s;) and its estimate of environmental dynamics
for the human’s actions P}, (s¢y1]at, s¢). This updating process continues until the
human is finished showing the robot a set of actions needed to accomplish the
task. Three different coordinate origins, O,, Oy, O,., are used to align state spaces
between the human and robot. Each origin is defined by a set of offsets and scaling
factors: O = {z,y,2,0,,0,,0.,04,04,0.}. 0z,0,,0, respectively indicate scaling
factors along the X, Y, Z axes, relative to the motion capture world origin O,.
When the robot is “watching” the human, Oy, is used; when the robot is imitating,
O, is used. The origin-corrected object position s; defines an intermodal space in
the same spirit as AIM. In this experiment, the robot selects an action to match
the state of the box when it lifts with the state of the box when the human lifts,
rotated and scaled appropriately.

When the robot is instructed to imitate, it determines an optimal action a; by
convolving P(a¢|s:) with Pp(s¢+1]at, s¢). After it finishes executing the action, the
robot collects an updated snapshot of the object state, s;y1. This is used to update
a different forward model, P, (sy11]at, s¢), representing the robot’s estimate of how
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its actions influence world state. Given a starting state s; and a candidate action ay,
the robot uses P, if the number of samples in Py, (-|aq, s¢) is equal to or greater than
the number of samples in P, (+|at, s¢). The human’s prior model therefore helps guide
the robot toward exploring potentially profitable actions, while the robot builds up
a probabilistic model of how reliable each of those actions is likely to be.

Figure 8 shows how Bayesian action selection as described in Eq. (5) operates
as the robot acquires more information about environmental dynamics. The human
demonstrated a total of 25 different attempts to lift the box; some attempts by the
human instructor failed to attain the correct discretized state. Based on thresholding
the log-likelihood of the Viterbi score as described above, the system discovers a
total of eight actions used by the human instructor to lift the box; these actions
represent two different styles of one-handed and two-handed lifting actions. For
clarity, the figure only contains log likelihoods for the two most probable actions.
One particular one-handed lift has much higher prior likelihood, since the human
demonstrates it more often than other types of lift. The second most likely lift
(according to the prior model) is a two-handed lift. The robot tries the one-handed
action with high prior likelihood for 13 iterations; by the 14th iteration, the number
of samples in P, finally exceeds the number in P;,. This leads the robot to reestimate
the log likelihood of reaching the goal using the one-handed action (which, since
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Fig. 8. Learning environmental dynamics using a combination of watching and exploring: We used
motion capture to train a HOAP-2 humanoid robot to pick up a box. A human demonstrator
(right) shows two types of actions to accomplish the goal of lifting the box to chest height (one-
handed versus two-handed lifting). Actions are encoded as hidden Markov models, and fit to a
model of the robot’s body using inverse kinematics software. After watching, the robot interacts
with the box to determine which actions are effective at reaching the goal. The limited capabilities
of the robot ensure that it can only succeed if it tries a two-handed lift. Initially the robot tries
a one-handed lift. After it has built up sufficient samples to reestimate its forward model of how
the box acts (at iteration 14), the robot begins to use a two-handed lift instead. Because the
one-handed lift never succeeds, the estimated log likelihood of its success becomes clamped at
the minimum value of —4. Log likelihood of the two-handed action fluctuates; often it works, but
occasionally it fails.
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Fig. 9. Contribution of prior and forward models: At left, log likelihood estimates for two of the
eight actions encoded using HMMs. Black bars represent prior model probabilities; grey bars repre-
sent forward model likelihood estimates. Note that while the prior probability stays unchanged over
time (since it reflects preferences of the human instructor), the forward model likelihood changes
once the robot has acquired sufficient samples from environmental interaction. Thus, early in the
learning process (e.g. iteration 1), the robot favors the one handed lift action due to its higher
likelihood value; with additional experience (e.g. iteration 40), it switches to the two-handed lift
action, which is more reliable for the robot and has higher likelihood. Center column shows the
robot attempting a one-handed action at iteration 1, and a two-handed action at iteration 40.
At right, we show an example of sparse histograms representing the forward dynamics of the box
when affected by three different actions. Grayscale squares reflect the probability of attaining a
particular 1 cm? state location in the X-Y plane given the starting state of the box and one of the
three actions (push forward, push left, push right). The human instructor provided 20 examples
of each action, and the system correctly identified all 60 total action samples using the Viterbi
algorithm.

it never succeeds, is clipped at a minimum log likelihood of —4). The robot then
tries one of the two-handed actions, and succeeds. Small dips in the log likelihood
of the two-handed action reflect the fact that it is not perfect; the robot sometimes
drops the box even with two hands. As the number of trials increases, the robot’s
estimate of action reliability tends to reach a steady value reflecting the interaction
between the robot and objects of interest. This has potential applications as a partial
solution of the imitation correspondence problem;"2:24:25 the robot can determine
quality of correspondence by examining how closely its estimated forward model
matches that shown by the human. This example involved only two time steps,
but 225,000K total states (50 discretized X levels, 50 for Y, ten for Z, and three
each for 6,,6,,6.). Only a small fraction of these states are actually encountered
in the course of the human demonstrating the action, motivating our use of sparse
histograms.

5. Conclusion

We have described a Bayesian framework for performing imitation-related tasks.
The framework is modeled on cognitive findings and on the ideas of forward
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Fig. 10. Block diagram of HOAP-2 imitation on objects: Our system uses motion capture to
identify actions and the effects of those actions on object states. A linear model (scaling, rotation,
and translation) creates correspondences between states of the human actor and states of the
humanoid. Object states are encoded as discretized 6D motion capture values {z,vy, 2, 0z, 0y,0:}.
Sparse histograms are used to represent forward and prior models. Contrast the architecture here
with Fig. 2(b).

and inverse models from control theory. We described how model-based learning
allows Bayesian-optimal action selection and plan recognition. We have imple-
mented aspects of the framework in simulation, in an active vision head, and in
a humanoid robot.

Ongoing work in our laboratories concentrates on both the cognitive and robotics
sides of the imitation puzzle. Recently we have begun concentrating on a real-time
implementation of our imitation system, allowing users to quickly program new
tasks for our humanoid and to correct instructor mistakes.?? We are also conducting
studies of infant imitation and gaze following, using the humanoid as a flexible
platform for testing which behavioral cues are important when children learn about
social agents in their world.
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